Interdispersed Amorphous MnOxCarbon Nanocomposites with Superior Electrochemical Performance as LithiumStorage Material
نویسندگان
چکیده
The realization of manganese oxide anode materials for lithium-ion batteries is hindered by inferior cycle stability, rate capability, and high overpotential induced by the agglomeration of manganese metal grains, low conductivity of manganese oxide, and the high stress/strain in the crystalline manganese oxide structure during the repeated lithiation/delithiation process. To overcome these challenges, unique amorphous MnOx–C nanocomposite particles with interdispersed carbon are synthesized using aerosol spray pyrolysis. The carbon filled in the pores of amorphous MnOx blocks the penetration of liquid electrolyte to the inside of MnOx, thus reducing the formation of a solid electrolyte interphase and lowering the irreversible capacity. The high electronic and lithium-ion conductivity of carbon also enhances the rate capability. Moreover, the interdispersed carbon functions as a barrier structure to prevent manganese grain agglomeration. The amorphous structure of MnOx brings additional benefits by reducing the stress/strain of the conversion reaction, thus lowering lithiation/delithiation overpotential. As the result, the amorphous MnOx-C particles demonstrated the best performance as an anode material for lithium-ion batteries to date.
منابع مشابه
Amorphous Si/SiOx/SiO2 nanocomposites via facile scalable synthesis as anode materials for Li-ion batteries with long cycling life{
Novel Si/SiOx/SiO2 nanocomposites were prepared via a facile and scalable wet synthesis. The amorphous structure, nanoscale particle size, and composition of the Si/SiOx/SiO2 material were characterized and its electrochemical performance as an anode for Li-ion batteries was evaluated. The material shows a stable cycling capacity of y600 mA h g over 350 cycles with high coulombic efficiency of ...
متن کاملHierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries.
Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. Ti...
متن کاملSynthesis, Characterization, and Application of Novel Ni-P-Carbon Nitride Nanocomposites
Dispersion of 2D carbon nitride (C3N4) nanosheets into a nickel phosphorous (NiP) matrix was successfully achieved by ultrasonication during the electroless plating of NiP from an acidic bath. The morphology and thickness, elemental analysis, phases, roughness, and wettability for as-plated and heat-treated nanocomposite were determined by scanning electron microscopy, energy-dispersive X-ray s...
متن کاملSynthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries
In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...
متن کاملPorous spherical carbon/sulfur nanocomposites by aerosol-assisted synthesis: the effect of pore structure and morphology on their electrochemical performance as lithium/sulfur battery cathodes.
Porous spherical carbons (PSCs) with tunable pore structure (pore volume, pore size, and surface area) were prepared by an aerosol-assisted process. PSC/sulfur composites (PSC/S, S: ca.59 wt %) were then made and characterized as cathodes in lithium/sulfur batteries. The relationships between the electrochemical performance of PSC/S composites and their pore structure and particle morphology we...
متن کامل